Crowding in Peripheral Vision: Why Bigger Is Better

نویسندگان

  • Dennis M. Levi
  • Thom Carney
چکیده

We enjoy the illusion that visual resolution is high across the entire field of vision. However, this illusion can be easily dispelled by trying to identify objects in a cluttered environment out of the corner of your eye. This reflects, in part, the well-known decline in visual resolution in peripheral vision; however, the main bottleneck for reading or object recognition in peripheral vision is crowding. Objects that can be easily identified in isolation seem indistinct and jumbled in clutter. Crowding is thought to reflect inappropriate integration of the target and flankers in peripheral vision [1, 2]. Here, we uncover and explain a paradox in peripheral crowding: under certain conditions, increasing the size or number of flanking rings results in a paradoxical decrease in the magnitude of crowding-i.e., the bigger or more numerous the flanks, the smaller the crowding. These surprising results are predicted by a model in which crowding is determined by the centroids of approximately 4-8 independent features within approximately 0.5x the target eccentricity. These features are then integrated into a texture beyond the stage of feature analysis. We speculate that this process may contribute to the illusion of high resolution across the field of vision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grouping, pooling, and when bigger is better in visual crowding.

In crowding, perception of a target is strongly deteriorated by nearby elements. Crowding is often explained by pooling models predicting that adding flankers increases crowding. In contrast, the centroid hypothesis proposes that adding flankers decreases crowding--"bigger is better." In foveal vision, we have recently shown that adding flankers can increase or decrease crowding depending on wh...

متن کامل

Suppressive and facilitatory spatial interactions in peripheral vision: peripheral crowding is neither size invariant nor simple contrast masking.

Peripheral vision is characterized by reduced spatial resolution and inhibitory spatial interactions that extend over long distances. This work had three goals. (1) We considered whether the extensive crowding in peripheral vision is a consequence of a shift in the spatial scale of analysis. To test this, using a large range of target sizes and spatial frequencies, we measured the extent of cro...

متن کامل

Configuration specificity of crowding in peripheral vision

Peripheral vision is characterized in part by poor spatial resolution and impaired visual performance, particularly when the object is surrounded by flanking elements, a phenomenon popularly known as "crowding". Crowding scales with eccentricity irrespective of the target size, both in terms of magnitude and spatial extent, which is determined by varying the target-flanker separation. However, ...

متن کامل

Macaque monkeys experience visual crowding.

In peripheral vision, objects that are easily discriminated on their own become less discriminable in the presence of surrounding clutter. This phenomenon is known as crowding.The neural mechanisms underlying crowding are not well understood. Better insight might come from single-neuron recording in nonhuman primates, provided they exhibit crowding; however, previous demonstrations of crowding ...

متن کامل

A compressed sensing model of crowding in peripheral vision

We here model peripheral vision in a compressed sensing framework as a strategy of optimally guessing what stimulus corresponds to a sparsely encoded peripheral representation, and find that typical letter-crowding effects naturally arise from this strategy. The model is simple as it consists of only two convergence stages. We apply the model to the problem of crowding effects in reading. First...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009